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Interaction of free-surface waves with a floating dock
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Abstract. A new method to describe the interaction of waves with a rigid or flexible dock, with zero draft, is
derived. By means of Green’s theorem an integral equation along the platform for either the velocity potential
or the deflection is obtained. In the two-dimensional case this equation is solved by means of a superposition
of exponential functions. With a specific choice of the Green function the integration with respect to the space
coordinate can be carried out analytically. The integration left is the integration in the k-plane that occurs in the
chosen Green function. Subsequently the contour of this integral is modified in the complex plane. This results
at first in a dispersion relation for the phase functions in the expansion. Then the set of algebraic equations for
the amplitude coefficients follows from the same singularity analysis in the complex plane. These equations are
very simple and easy to solve. In contrast to the classical approach of eigen-mode expansions, there is no need to
split the problem in a symmetric and antisymmetric one. An other advantage is that the transmission and reflection
coefficients are determined seperately by means of Green’s theorem, applied at the free surface in the far field.
The method is first explained for the semi-infinite rigid dock, followed by the rigid strip, the moving strip and the
flexible moving platform. In the appendix it is explained how to derive a set of algebraic equations in the case
when the incident wave is not perpendicular to the strip.
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1. Introduction

We consider the two-dimensional interaction of an incident wave with a floating dock with
small draft. The water depth is finite. This is a classical problem. For instance, Mei and
Black [1] have solved a problem by means of a variational approach. They considered a fixed
bottom and fixed free-surface obstacle, so they also covered the case of small draft. After
the problem has been split in a symmetric and an antisymmetric one, the method consists of
matching of eigenfunction expansions of the velocity potential and its normal derivative at the
boundaries of two regions. In principle, their method can be extended to the flexible platform
case. Because we consider objects with a small draft only, a simpler method can be derived
for both the moving rigid and the flexible dock. It is explained by Hermans [2] that in the
flexible case the results may serve as the solution of a canonical problem for the application
of the ray method for some three-dimensional problems with a inhomogeneous distribution
of the rigidity coefficient. Recently Linton [3] also considered the problem of a fixed two-
dimensional small draft dock. He sets up his equations in the same way as done by Mei and
Black [1], but his analysis of the equations is different. He uses the modified residue calculus
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technique to solve the algebraic set of equations. However, as stated in his conclusions, he
finally has to solve a set of algebraic equations numerically. The difference with our approach
is that we derive an equation at the dock surface directly, while the required continuity of the
potential function and velocities is fulfilled automatically.

The rigid-dock problem is less complicated than the flexible-platform problem, so it serves
as an interesting problem to explain some details of the method to generate solutions with
simple means. We start with the derivation of an integral equation and show that its solution
can be written as a superposition of exponential functions with unknown phase and amplitude.
If one chooses the Green’s function in a proper way, the dispersion relation for the phase
functions and a simple set of algebraic equations for the amplitudes are obtained by analytic
manipulations in the complex plane. It is also shown that, if one allows the dock to heave
and pitch freely, the amplitudes of these motions are easily obtained as well. In this case the
method is essentially different from the usually used approach, where one treats excitation and
reaction potentials seperately. In our formulation we consider the total potential. The added
mass and wave damping are incorporated automatically. In the last section we repeat the same
steps to obtain a formulation for the deviation of a flexible platform and also present some
results for this case.

2. Mathematical formulation

In this section we derive the general three-dimensional formulation for the diffraction of waves
by a thin free-surface obstacle of general geometric form.

The fluid is incompressible, so we introduce the velocity potential�(x, t), such that V (x, t)
= ∇�(x, t), where V (x, t) is the fluid-velocity vector. We assume waves in water without
current. Hence, �(x, t) is a solution of the Laplace equation

�� = 0 in the fluid, (1)

together with the linearised kinematic condition, �z = ζ̃t , and dynamic condition, P/ρ =
−�t −gζ̃ , at the linearized free water surface z = 0, where ζ̃ (x, y, t) denotes the free-surface
elevation, and ρ is the density of the water. The linearised free-surface condition outside the
obstacle becomes:

∂2�

∂t2
+ g

∂�

∂z
= 0 (2)

at z = 0 and (x, y) ∈ F . The water depth h is assumed to be constant and finite; hence we
have �z = 0 at z = −h. At first the rigid platform is assumed to be at a fixed position. Later
the method is extended for a two-dimensional platform that is free to move in heave and pitch.
In the first case the vertical velocity �z at the platform P becomes zero, while, if the platform
is free to move, the vertical velocity is expressed in the unknown heave and pitch motions.
The definition of the geometry is presented in Figure 1. Harmonic waves can be written as
�(x, t) = φ(x)e−iωt and the undisturbed incident wave equals:

φinc(x) = gζ∞

iω

cosh(k0(z+ h)

cosh(k0h)
exp{ik0(x cos β + y sin β)}, (3)

where ζ∞ is the wave amplitude, ω the frequency, h the water depth, β the angle of incidence
with respect to the x-axis, while the real wave number k0 obeys the dispersion relation,
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Figure 1. Definition of the geometry.

k0 tanh(k0h) = K = ω2

g
, (4)

for finite water depth.
Next, we derive an integral equation for φ(x). To do so, the fluid domain will be split up

in two regions. We define the region underneath the platform as D− and the region towards
infinity as D+, while the interface is denoted by ∂D . The potential function in D+ is written
as a superposition of the incident wave potential and a diffracted wave potential, as follows

φ(x) = φinc(x)+ φ+(x), (5)

while the total potential in D− is denoted by φ−(x). It will be shown that this choice leads to
an interesting way to derive an integral equation that can be solved numericaly. At the dividing
surface ∂D we require continuity of the total potential and its normal derivative.

We introduce the Green’s function G(x, ξ) that fulfils�G = 4πδ(x−ξ), the boundary con-
ditions at the free-surface and the bottom and also the radiation condition. Green’s functions
for several free-surface problems can be found in Wehausen and Laitone [4].

We apply Green’s theorem first to the potential φ+(x) and G(x; ξ ) and then to φ−(x) and
G(x; ξ). This leads to the following approach. For x ∈ D+ we have:

4πφ+(x) = −
∫
∂D∪F

(
φ+(ξ)

∂G(x; ξ)

∂n
− G(x; ξ )

∂φ+(ξ)
∂n

)
dS ,

0 =
∫
∂D∪P

(
φ−(ξ)

∂G(x; ξ)

∂n
− G(x; ξ)

∂φ−(ξ)
∂n

)
dS

(6)

and in the region x ∈ D− we have:

0 = −
∫
∂D∪F

(
φ+(ξ)

∂G(x; ξ)

∂n
− G(x; ξ )

∂φ+(ξ)
∂n

)
dS ,

4πφ−(x) =
∫
∂D∪P

(
φ−(ξ)

∂G(x; ξ)

∂n
− G(x; ξ)

∂φ−(ξ)
∂n

)
dS .

(7)

The integrals over F become zero, due to the zero-current free-surface condition for G and
φ+. We add up the two expressions in (7), for x ∈ D−, and use the free-surface condition for
the Green’s function and the potential φ+. This leads to
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4πφ−(x) =
∫
∂D

(
[φ](ξ)∂G(x; ξ)

∂n
− G(x; ξ)[∂φ

∂n
](ξ)

)
dS

+
∫

P

(
Kφ−(ξ)− ∂φ−(ξ)

∂z

)
G(x; ξ ) dS,

(8)

where we have used the notation [· · · ] for the jump �− − �+ of the function � concerned.
Furthermore, we use the jump condition between the potentials φ+ and φ− and their deriv-
atives. For the total potential the jumps are zero. The first integral can be further simplified.
It is independent of the platform, hence it equals 4πφinc. For x ∈ D+ we add up the two
expressions in (6) and use expression (5) to arrive at the following expression valid in the
whole fluid domain:

4πφ(x) = 4πφinc(x)+
∫

P

(
Kφ(ξ )− ∂φ(ξ)

∂z

)
G(x; ξ ) dS. (9)

In the two-dimensional case, that is in the (x, z)-plane, the expression for the total potential
becomes:

2πφ(x, z) = 2πφinc(x, z)+
∫

P

(
Kφ(ξ, 0) − ∂φ(ξ, 0)

∂z

)
G(x, z; ξ, 0) dξ. (10)

There are several descriptions for the Green’s function available in Wehausen and Laitone
[4] for the finite-water-depth case. Most of them are written as a superposition of an infinite
fluid source in the fluid region and one mirrored with respect to the bottom. In the deep-water
case it is common to combine the source with its mirror with respect to the free surface. In
all cases the remainder can be found by means of Fourier transforms in the two horizontal
coordinates. For direct numerical computations it is a matter of taste how to split up the
Green’s function. For our purpose, however, one has to choose to write the Green’s function
as an infinite fluid source and subtract its mirror with respect the free surface. The remainder
follows by Fourier transformations. For the finite-depth case this is a very inconvenient way
to compute the perturbed field due to a surface-piercing body. However, in our case we end
up with a simple integral because both the source and the collocation points are located at the
free surface.

At z = ζ = 0 the two-dimensional Green’s function for finite water depth, obeying the
radiation condition, has the form:

G(x, 0; ξ, 0) = −
∫

L′

cosh kh

k sinh kh−K cosh kh
eik(x−ξ) dk (11)

and the three-dimensional version has the form:

G(x, y, 0; ξ, η, 0) = −2
∫ ∞

0

k cosh kh

k sinh kh−K cosh kh
J0(kR) dk. (12)

The contour of integration L′ in (11) is given in Figure 2, where k0 is defined in (4). The
contour of integration in (12) is the right-hand part of L′. It is chosen such that the radiation
condition is fulfilled. R is the horizontal distance, so R2 = (x − ξ)2 + (y − η)2.

3. Fixed rigid platform

Here we consider the two-dimensional case and an angle of incidence β = 0, while in the
appendix the extension for β �= 0 is explained. In this section the motion of the platform is
zero; hence φz = 0 at P . If we take z = 0 in (10), we arrive at an integral equation:
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Figure 2. Contour of integration.

2πφ(x, 0) = 2πφinc(x, 0)+K

∫
P

φ(ξ, 0)G(x, 0; ξ, 0) dS for x ∈ P . (13)

One must realize that the kernel of the integral equation has a weak singularity, so the factor
in the left-hand side remains unaltered. In the two-dimensional case this integral equation,
with a convenient choice of the Green’s function, can be simplified analytically into a matrix
equation.

We first consider the half-plane problem, so the platform is present for positive values of x,
while the free surface is defined for negative values of x. We seek a solution as a superposition
of exponential functions of the form:

φ(x, 0) = gζ∞

iω

∞∑
n=1

ane
iκnx. (14)

The constant values of the ‘amplitudes’ an and ‘wave numbers’ κn will be determined by
solving the integral equation. We truncate the series at n = N . The values of κn will follow
from a pole analysis. Obviously, they will be the same as one may obtain by an eigenfunction
expansion of the function φ(x, z). Due to the fact that (14) is an expansion of φ(x, 0), we do
not permit ourselves to make use of this a priori knowledge. The only requirement, on κn, we
have at this moment is that, if it is a complex number, the imaginary part must be positive and,
for real values, if any, it must be positive due to the radiation condition.

We now insert (14) and (12) into the integral equation (9). We carry out the integration with
respect to ξ . The contribution of x = ∞ has to be zero; this can be achieved by introducing
a small damping in the formulation. For the strip problem this mathematical inconvenience
does not occur. We obtain:

N∑
n=1

ane
iκnx = eik0x + i

N∑
n=1

an
K

2π

∫
L′

cosh kheikx dk

(k sinh kh−K cosh kh)(k − κn)
. (15)

The poles of the integrand are k = κn, their values still being unknown at this stage, and the
zeros of the dispersion relation for the water surface is given as:

k tanh kh = K. (16)

This equation has two real solutions, k = ±k0, and infinitely many along the imaginary axis
k = ±kn = ±ik(i)n . These poles lead to the relations for the determination of the amplitudes
an.

The values of x are positive, so we may close the contour in the upper half-plane. We
assume that the κn’s are on the real axis or in the upper complex plane. If there are real κn’s,
as will be the case in the elastic case, the radiation condition tells us that, if they are on the
positive axis, we have to deform the contour underneath and for the negative values above.
Application of the residue lemma then leads to the ‘dispersion’ relation for κn:

sinh κnh = 0 (17)
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with solution κnh = nπ i for n = 1, 2, · · · . It is easy to show that the solution κ0 = 0 does not
contribute.

We now consider the zeros of the dispersion relation for the water surface. These poles
lead to the relations for the determination of the amplitudes an, by comparing the exponential
functions in the final expression and taking their coefficients equal zero. One must realize
that the inhomogeneous term in Equation (15) consists of one exponential term, so the only
inhomogeneous equation is generated by the pole k0.

We truncate the series in the ray expansion at N terms, which means that we have to
take into account N zeros of the water dispersion relation, one on the real and N − 1 on the
imaginary axis. If one closes the contour in the complex k-plane, the contribution of these
poles leads to:

k0

N∑
n=1

an

κn − k0
= Kh − 1 − k2

0h

K
(18)

and for i = 1, · · · , N − 1:
N∑
n=1

an

κn − ki
= 0. (19)

This set of equations is solved numerically for the amplitude coefficients an. The pressure
distribution along the platform is easily calculated. Convergence tests are carried out by
varying the value of N . It turns out that the series expansion has the same nice properties,
e.g., fast convergence, as were experienced by Linton [3] and that N can be taken small. This
is not surprising because the series expansion for x ∈ P is the same as the one one gets in the
mode-expansion approach; however, the algebraic equations are completely different.

P(x, t) = p(x)e−iωt = gζ∞ρ
N∑
n=1

an exp{iκnx − iωt}. (20)

An extension of this approach to a strip of finite width l, 0 ≤ x ≤ l, can de done straight-
forwardly.

φ(x, 0) = gζ∞

iω

N∑
n=1

(
ane

iκnx + bne
−iκn(x−l)) . (21)

We insert this expression into the integral equation (13) and obtain the following relation for
x ∈ P :

N∑
n=1

(
ane

iκnx + bne
−iκn(x−l)) = eik0x − iK

2π

∫
L′

cosh kh

k sinh kh−K cosh kh

×
N∑
n=1

[
an

k − κn

(
e−il(k−κn) − 1

) + bn

k + κn

(
e−ikl − eiκnl

)]
eikx dk.

(22)

We carry out the same analysis in the complex plane as before. We split the integral in two
parts and close the contour in the upper half plane if the k-dependent exponential function
eikx occurs and in the lower half plane if eik(x−l) occurs. Because κn fulfils (17) the poles
k = ±κn again give rise to an identity. This can be verified by inspection. We finally obtain
2N equations for the unknown an and bn:
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k0

N∑
n=1

[
an

κn − k0
− bneiκnl

κn + k0

]
= Kh − 1 − k2

0h

K

and
N∑
n=1

[−aneiκnl

κn + k0
+ bn

κn − k0

]
= 0.

For i = 1, · · · , N − 1 we obtain:

N∑
n=1

[
an

κn − ki
− bneiκnl

κn + ki

]
= 0

and
N∑
n=1

[−aneiκnl

κn + ki
+ bn

κn − ki

]
= 0.

These equations can be solved numerically. The reflection and transmission coefficients
follow from the expression for the potential function for x ∈ F as given in (13):

φ(x, 0) = φinc(x, 0) − gKζ∞

2πω

∫
L′

cosh kh

k sinh kh−K cosh kh

×
N∑
n=1

[
an

k − κn

(
e−il(k−κn) − 1

) + bn

k + κn

(
e−ikl − eiκnl

)]
eikx dk.

(23)

The amplitude of the transmitted wave, x > l, can be obtained by closing of the path of inte-
gration in the upper half-plane, while the amplitude of the reflected wave, x < 0, is obtained
by closing the path of integration in the lower half-plane. The contributions in the far field
(large values of |x|) originate from the poles at k = k0 and k = −k0, respectively. The complex
wave elevation in the far field for the reflected wave is ζ(x) = iω

g
φ(x, 0) = Rζ∞e−ik0x and

for the transmitted wave it is written as ζ(x) = T ζ∞eik0x . We obtain for the reflection and
transmission coefficients:

R = Kk0

(K(1 −Kh)+ k2
0h)

N∑
n=1

[
an

k0 + κn

(
ei(k0+κn)l − 1

) + bn

k0 − κn

(
eik0l − eiκnl

)]
(24)

and

T = 1 + Kk0

(K(1 −Kh)+ k2
0h)

N∑
n=1

[
an

k0 − κn

(
e−i(k0−κn)l − 1

) + bn

k0 + κn

(
e−ik0l − eiκnl

)]
. (25)

The poles in the integrand of (23) along the imaginary axis furnish us with the coefficients of
the evanescent modes.
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4. Moving rigid platform

In this section we consider a two-dimensional platform that is free to move in heave and pitch.
The incident waves are perpendicular to the strip. The mass of the platform, of length l, is
denoted by M and the moment of inertia around the center of the platform, x = l/2, by
I . The heave-and-pitch (positive counter clockwise) motions of the platform are denoted by
W(t) = we−iωt and θ̃ (t) = θe−iωt . These motions are assumed to be small, so that the vertical
motion and velocity of the fluid underneath the platform (0 ≤ x ≤ l) can be approximated by

ζ̃ (x, t) = W(t)+ (x − l/2)θ̃(t), ζ(x) = w + (x − l/2)θ,

�z(x, 0, t) = ∂ζ̃ (x, t)

∂t
, φz(x, 0) = −iωζ(x).

(26)

The pressure underneath the platform can be approximated by:

p(x)

ρ
= iωφ(x, 0) − g (w + (x − l/2)θ) . (27)

In the frequency domain the equations of motion of the platform become:

ω2Mw = −
∫ l

0
p(x) dx, ω2Iθ = −

∫ l

0
(x − l/2) p(x) dx. (28)

If we insert relation (21) into the expression for the pressure, these equations of motion result
in two relations between the unknowns an, bn, w and θ . The two equations of motion lead to
the following relations:

N∑
n=1

[
an + bn

iκn

(
eiκnl − 1

)] +
[
KM

ρ
− l

]
w

ζ∞ = 0

and

N∑
n=1

(an − bn)

[
1

κ2
n

(
eiκnl − 1

) + 1

iκn

(
eiκnl + 1

)] +
[
KI

ρ
− l3

12

]
θ

ζ∞ = 0.

The integral equation for the potential function φ now becomes:

2πφ(x, 0) = 2πφinc(x, 0)+
∫

P

{Kφ(ξ, 0)+ iω (w + (ξ − l/2)θ)}G(x, 0; ξ, 0) dS for x ∈ P .
(29)

We now repeat the same analysis as before and obtain for the 2N equations for the unknown
2N + 2 unknowns an, bn,w and θ :

k0

N∑
n=1

[
an

κn − k0
− bneiκnl

κn + k0

]
+ 1

ζ∞

[
w + θ

(
1

ik0
− l

2

)]
= Kh− 1 − k2

0h

K

and

k0

N∑
n=1

[−aneiκnl

κn + k0
+ bn

κn − k0

]
+ 1

ζ∞

[
w − θ

(
1

ik0
− l

2

)]
eik0l = 0.
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Figure 3. Amplitude of the heave, ______ w/ζ∞ and pitch motion, . . . θ/(k0ζ
∞).

For i = 1, · · · , N − 1 we obtain:

ki

N∑
n=1

[
an

κn − ki
− bneiκnl

κn + ki

]
+ 1

ζ∞

[
w + θ

(
1

iki
− l

2

)]
= 0

and

ki

N∑
n=1

[−aneiκnl

κn + ki
+ bn

κn − ki

]
+ 1

ζ∞

[
w − θ

(
1

iki
− l

2

)]
eiki l = 0.

The solution of this set of equations lead to the heave-and-pitch motions directly. In Figure 3
the amplitudes of the heaveand-pitch motion are shown for a platform with l = 300 m,M/ρ =
3 × 105 m2 and I/ρ = 18 × 109 m4, while the water depth is h = 10 m. We have taken
N = 10 in these computations. Numerical tests show that the series converge very fast; this is
what one should expect because, away from the endpoints of the dock, we have an expansion
in exponentially decaying functions. It turns out that at the end points the convergence is also
fast. For the chosen water depth N = 5 also gives accurate results. For N = 1 the values of
heave and pitch are within 1 percent of the converged results. One also notices that the low-
frequency limit of the heave-and-pith amplidude approaches the correct value. The quantitities
given in Figure 3 must approach the value one at low frequencies.

We can now obtain formulas for the reflection and transmission coefficients by considering
the asymptotic wave field at x = ±∞. The pole analysis leads to the following expressions.

R = K

(K(1 −Kh)+ k2
0h)

{
k0

N∑
n=1

[
an

k0 + κn

(
ei(k0+κn)l − 1

) + bn

k0 − κn

(
eik0l − eiκnl

)]

+ [
1 − eik0l

]
w −

[
l

2

(
1 + eik0l

) + 1

ik0

(
1 − eik0l

)]
θ

} (30)

and
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Figure 4. ______ reflection and . . . transmission coefficient.

T = K

(K(1 −Kh)+ k2
0h)

{
k0

N∑
n=1

[
an

k0 − κn

(
e−i(k0−κn)l − 1

) + bn

k0 + κn

(
e−ik0l − eiκnl

)]

+ [
1 − e−ik0l

]
w −

[
l

2

(
1 + e−ik0l

) − 1

ik0

(
1 − e−ik0l

)]
θ

}
+ 1. (31)

An example of the reflection and transmission coefficients is given in Figure 4 for the same
parameters as in Figure 3. The energy conservation rule:

|R|2 + |T |2 = 1

is fulfilled in the numerical tests up to seven decimals.

5. Moving flexible platform

In the case of a flexible two-dimensional platform, for x ∈ P , Green’s theorem results in an
integral equation for the deflection W(x, t) = ζ∞w(x)e−iωt , for a derivation see Hermans [5],

2π

{
1 − µ+ d2

dx2
D

d2

dx2

}
w(x)+K

∫
P

G(x, 0; ξ, 0)

{
µ− d2

dξ 2
D

d2

dξ 2

}
w(ξ) dS = 2πeik0x,

(32)

where D = D
ρg

is the flexural rigidity divided by the density of the water times the acceleration
of gravity, µ = mK

ρ
with m the mass of the platform per unit length and width. We follow the

same approach as before and introduce:

w(x) =
N+1∑
n=0

(
ane

iκnx + bne
−iκn(x−l)) . (33)

After integration with respect to ξ , the poles in k = κn lead to the dispersion relation for the
elastic plate:

(Dκ4 − µ+ 1)κ tanh κh = K. (34)
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This dispersion relation has solutions in the complex plane, at the real axis ±κ0, at the imagi-
nary axis ±κn, n = 3, 4, 5, · · · , and four in the complex plane ±κ1,2 = ±(κre ± iκim). In our
expansions only those values that obey the radiation condition play a role; hence the contour
of integration passes underneath the poles on the positive real axis and above the one on the
negative real axis. One must keep in mind that the position of the poles is similar to that for
the dispersion relation for the water surface, except for the two extra complex poles in the
upper complex plane.

Again we take into account N solutions for the ‘water’ dispersion relation (17), while we
have N + 2 zeros of the ‘plate’ dispersion relation. This leads to 2N equations for the 2N + 4
unknowns an and bn.

k0

N+1∑
n=0

(
Dκ4

n − µ
) [

an

κn − k0
− bneiκnl

κn + k0

]
= Kh− 1 − k2

0h

K

and
N+1∑
n=0

(
Dκ4

n − µ
) [−aneiκnl

κn + k0
+ bn

κn − k0

]
= 0.

For i = 1, · · · , N − 1 we obtain:
N+1∑
n=0

(
Dκ4

n − µ
) [

an

κn − ki
− bneiκnl

κn + ki

]
= 0

and
N+1∑
n=0

(
Dκ4

n − µ
) [−aneiκnl

κn + ki
+ bn

κn − ki

]
= 0.

The boundary conditions at the edge of the platform

d2w

dx2
= 0 and

d3w

dx3
= 0 at x = 0, l

lead to four equations for the unknowns an and bn. The reflection and transmission coefficients
now become:

R = Kk0

(K(1 −Kh)+ k2
0h)

N+1∑
n=0

(
Dκ4

n − µ
) [

an

k0 + κn

(
ei(k0+κn)l − 1

) + bn

k0 − κn

(
eik0l − eiκnl

)]
(35)

and

T = Kk0

(K(1 −Kh)+ k2
0h)

N+1∑
n=0

(
Dκ4

n − µ
) [

an

k0 − κn

(
e−i(k0−κn)l − 1

)
+ bn

k0 + κn

(
e−ik0l − eiκnl

)] + 1.

(36)

Numerical results for the deflection are shown in Figures 5(a,b) for h = 10 m, D =
107 m4 and 1010 m4 with4 = 2π/K. The reflection and transmission coefficients for the same
waterdepth and D = 107 m4 are shown are Figure 6. In practical cases one is also interested
in the second-order mean drft-force in the horizontal direction. According to Maruo [6], see
also Hermans [7], the drift-force can be expressed in the ampitude of the reflected wave
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Figure 5. Deflection for 4/l = 0·5, 0·3, 0·1 (top-down)

Figure 6. ______ reflection and . . . transmission coefficient.

Dx = 1

2
ρg|Rζ∞|2.

6. Conclusions

It is shown that the two-dimensional shallow-dock problem can be solved by rather sim-
ple means. The only approximations made are that we may consider both the free-surface
elevation and draft of the dock to be of the same order of magnitude. This results in a
boundary-value problem at z = 0. With a specific Green’s function an integral equation
can be formulated with solutions that can be written as a series of exponential functions,
similar as eigenfunction expansions. The series may be truncated at a finite number of terms.
In the computations shown ten terms are taken into account. Computation with a hundred
terms shows that ten terms give a very high degree of accuracy, for a wide range of the water
depth h. It is also found that in many cases even one term is sufficient. The well-known
dispersion relation for the platform influenced by the water region underneath the platform
follows from a pole analysis, while a set of equations for the coefficients of the exponential
functions follow from the same singularity analysis. This approach is much more efficient than
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the Wiener-Hopf formulation suggested by Tkacheva [8] for the flexible platform. The results
of both methods are comparable. It also becomes clear that, for the zero-draft dock, there is no
reason to split up the problem in a symmetric and an antisymmetric one, as has been done by
Linton [3]. The complete problem has been solved at once. The analysis described here can
not be carried out direcly in the case of a platform with finite draft.

Hermans [2] has shown that, in the case of short-wave diffraction by a flexible platform
with inhomogeneous elastic properties, the problem treated here may serve as a ‘canonical’
problem for the application of the ‘ray’ method. A direct application of the ray method leads to
an incomplete initial-value problem. The missing initial conditions are obtained by the method
shown here. In the deep-water case, h = ∞, it is advised to use the finite-depth formulation
with a large value of h compared to the wavelength. The iterative process, for the deep-water
case, as described by Hermans [9] is less efficient in comparison with the method described
here.

Acknowledgements

The author thanks one of the reviewers for pointing out the existence of the paper of Linton
and a missing factor of 1

2 in expression (A4).

Appendix, Incident waves at obligue angles

Here we give a description for the case of a fixed strip while the angle of incidence β �= 0.

4πφ(x, y, 0) = 4πφinc(x, y, 0) +K

∫
P

φ(ξ, η, 0)G(x, y, 0; ξ, η, 0) dS for x ∈ P . (A1)

We first consider the half-plane problem, so the platform is present for positive values of x,
while the free surface is defined for negative values of x. We seek a solution as a superposition
of exponential functions of the form:

φ(x, y, 0) = gζ∞

iω

∞∑
n=1

an exp {iκnx + ik0y sin β} for 0 ≤ β ≤ π
2 . (A2)

The only requirement, on κn, we have at this moment is that, if it is a complex number, the
imaginary part must be positive.

We now insert (A2) and (12) in the integral equation (A1). The infinte path of integration
with respect to η is changed in the semi-infinite path from 0 to +∞. Then we carry out the
integration with respect to ξ and η. To carry out the integration with respect to η we make use
of a Sonine-Gegenbauer expressions for Bessel functions:

∫ ∞

0
cos(bt)J0{k

√
a2 + t2} dt =




0 if k < b

cos(a
√
k2 − b2)√

k2 − b2
if k > b

. (A3)

The coefficient b in expression (A3) corresponds to k0 sin β. Finally, the integration with
respect to k is written as an integration along L′. The result becomes:
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∑
n

ane
iκnx = eik0x cosβ + i

∑
n

an
K

4π

∫
L′

cosh kh

k sinh kh−K cosh kh

×

 eix

√
k2−k2

0 sin2 β√
k2 − k2

0 sin2 β − κn

− e−ix
√
k2−k2

0 sin2 β√
k2 − k2

0 sin2 β + κn


 k dk√

k2 − k2
0 sin2 β

(A4)

We now define κ(n) as follows:

κ(n)
2 = κ2

n + k2
0 sin2 β.

One must take care of the discontinuous behaviour of (A3) properly. This can be done by
splitting the integral in two parts:

I1 =
∫

L′

cosh kheix
√
k2−k2

0 sin2 β k dk

(k sinh kh−K cosh kh)

(√
k2 − k2

0 sin2 β − κn

) √
k2 − k2

0 sin2 β

(A5)

and

I2 = −
∫

L′

cosh khe−ix
√
k2−k2

0 sin2 β k dk

(k sinh kh−K cosh kh)

(√
k2 − k2

0 sin2 β + κn

) √
k2 − k2

0 sin2 β

(A6)

The contour L′ passed the branch cut at the upper side in I1 and at the lower side I2. This
results in a zero contribution of the path along the branch cut in (A4), in accordance with the
discontinuous behaviour of the Sonine-Gegenbauer integral. For positive values of x the first
part I1 may be closed in the upper half-plane and the second part I2 in the lower half-plane.

Until now the values of κn are still unknown. We assume that the poles at
√
k2 − k2

0 sin2 β =
κn are in the upper half-plane. Application of the residue lemma at these points leads to the
‘dispersion’ relation for κ(n):

sinh κ(n)h = 0 (A7)

with solution κ(n)h = nπ i for n = 1, 2, · · · . It is easy to show that the solution κ(0) = 0 does
not contribute.

We now consider the zeros of the dispersion relation for the water surface

k tanh kh = K. (A8)

This equation has two real solution k = ±k0 and infinitely many along the imaginary axis
k = ±kn = ± ik(i)n . These poles lead to the relations for the determination of the amplitudes
an.

We truncate the series in the expansion at N terms; this means that we have to take into
account N zeros of the water dispersion relation, one on the real axis and N − 1 imaginary. If
one closes the contour in the complex k-plane the contribution of these poles leads to:

Kk0

(K(1 −Kh)+ k2
0h) cos β

N∑
n=1

an

(κn − k0 cos β)
+ 1 = 0 (A9)

and for i = 1, · · · , N − 1:
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N∑
n=1

an

(κn −
√
k2
i − k2

0 sin2 β)

= 0. (A10)

This set of equations for the amplitude coefficients an can be solved among others numerically.
An extension of this approach to a strip of finite width l, 0 ≤ x ≤ l, can de done straight-

forwardly.

φ(x, y, 0) = gζ∞

iω
eik0y sinβ

N∑
n=1

(
ane

iκnx + bne
−iκn(x−l)) . (A11)

If we carry out the same analysis in the complex plane as before, we obtain 2N equations for
the unknown an and bn:

Kk0

(K(1 −Kh)+ k2
0h) cos β

N∑
n=1

[
an

κn − k0 cos β
− bneiκnl

κn + k0 cos β

]
+ 1 = 0

and
N∑
n=1

[ −aneiκnl

κn + k0 cos β
+ bn

κn − k0 cos β

]
= 0.

For i = 1, · · · , N − 1 we obtain:

N∑
n=1


 an

κn −
√
k2
i − k2

0 sin2 β

− bneiκnl

κn +
√
k2
i − k2

0 sin2 β


 = 0

and
N∑
n=1


 −aneiκnl

κn +
√
k2
i − k2

0 sin2 β

+ bn

κn −
√
k2
i − k2

0 sin2 β


 = 0.
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